If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100-122k^2=0
a = -122; b = 0; c = +100;
Δ = b2-4ac
Δ = 02-4·(-122)·100
Δ = 48800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48800}=\sqrt{400*122}=\sqrt{400}*\sqrt{122}=20\sqrt{122}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{122}}{2*-122}=\frac{0-20\sqrt{122}}{-244} =-\frac{20\sqrt{122}}{-244} =-\frac{5\sqrt{122}}{-61} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{122}}{2*-122}=\frac{0+20\sqrt{122}}{-244} =\frac{20\sqrt{122}}{-244} =\frac{5\sqrt{122}}{-61} $
| -3(10x+10)+5(x=2)= | | 5^4x-3=125×5x | | X×x-x=870 | | 28x-12=63x+252 | | 28x-12=63+252 | | x+37=108 | | 42/t=-7 | | 54/b=-6 | | 24/c=-2 | | 40/n=-4 | | 54/y=-9 | | 28=2a+3 | | 7(4x+3)=3(9x+10) | | 11/24y=6/24 | | Y=0.5+1.5x | | 3x+20=x-8 | | 30x+70=2200 | | -x^2+2x-4x=8 | | 2b+b=180=4b=180 | | 5×+6y=129 | | 2^x-5=7x+9 | | x^2-8+14=3x-4 | | x+x+2x+100=360 | | p-12=-44 | | q-14=-50 | | p-52=-44 | | 45+5(x-3)=15 | | 100-x÷5=3x-40 | | n^2+n=400000 | | 13y+y=2 | | 2y+y=28 | | H(t)=-16t^2-30t+60 |